Sains Malaysiana 54(7)(2025): 1751-1762

http://doi.org/10.17576/jsm-2025-5407-09

 

The Molecular Characteristics of Extended-Spectrum β-Lactamases (ESBL), Carbapenem-Resistant Enterobacterales (CRE) and Susceptible Isolates of Klebsiella pneumoniae and Escherichia coli in Hospital Pakar Universiti Sains Malaysia (HPUSM), Kelantan, Malaysia

(Pencirian Molekul Spektrum Lanjutan β-Lactamases (ESBL), Carbapenem-Rintang Enterobacterales (CRE) serta Pencilan Kerentanan Klebsiella pneumoniae dan Escherichia coli di Hospital Pakar Universiti Sains Malaysia (HPUSM), Kelantan, Malaysia)

 

NUR HUSNA SHAHIMI1, ZETI NORFIDIYATI SALMUNA2, MAWADDAH MOHD AZLAN1, HASLIZAI HASSAN1 & NIK YUSNORAINI YUSOF1,*

 

1Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

 

Diserahkan: 29 Ogos 2024/Diterima: 14 Mei 2025

 

Abstract

Multidrug-resistance Klebsiella pneumoniae (MDR-KP) has become a major challenge to clinicians as it caused significant morbidity and mortality among hospitalized patients. This study aims to determine the antibiotic susceptibility profiles of 17 K. pneumoniae strains isolated to different antimicrobial agents and to characterize the genes encoding extended-spectrum β-lactamase (ESBL), AmpC and (Carbapenem Resistance Enterobacteriacae (CRE) phenotypes by using VITEK AST (Antimicrobial Susceptibility Test), phenotypic disk confirmatory test (PDCT) and polymerase chain reaction (PCR). Out of 17 K. pneumoniae isolates tested, seven (41.2%) were confirmed to be ESBL producers, carrying blaTEM (1; 14.3%), blaSHV(1; 14.3%), blaCTXM-1 (4; 57.14%), blaCTXM-14 (2; 28.6%) and co-existence of both blaTEM and blaCTXM-1 (1; 14.3%) genes, while four K. pneumoniae (23.5%) isolates were CRE strains, carrying co-existence of blaTEMand blaCTXM-1 genes, as well as blaNDM-1 (4; 100%). blaTEM and blaCTXMgenes were the most predominant genes detected in both K. pneumoniae ESBL and CRE isolates and blaNDM-1 genes was detected in K. pneumoniae CRE isolates which were in line with other findings worldwide. Understanding this link highlights the need for strategic antibiotic usage in healthcare settings by providing a deeper understanding of antibiotic resistance trends in multidrug resistant (MDR) organisms.

Keywords: Antibiotic resistant; CRE; ESBL; Klebsiella pneumoniae

 

Abstrak

Klebsiella pneumoniae rintang pelbagai ubat (MDR-KP) telah menjadi cabaran utama bagi pakar klinikal kerana ia menyebabkan morbiditi dan kematian yang signifikan dalam kalangan pesakit yang telah dirawat di hospital. Penyelidikan ini bertujuan untuk menentukan profil kerentanan antibiotik bagi 17 strain K. pneumoniae yang dipencilkan kepada agen antimikrob yang berbeza dan untuk mencirikan gen beta-laktamase spektrum lanjutan (ESBL), AmpC dan Enterobcacteriacae perintang karbapenem (CRE) menggunakan VITEK AST (Ujian Kecenderungan Antimikrob), ujian pengesahan cakera fenotipik (PDCT) dan reaksi rantaian polimerase (PCR). Daripada 17 pencilan K. pneumoniae yang diuji, tujuh pencilan (41.2%) telah disahkan sebagai pengeluar ESBL, membawa gen blaTEM (1; 14.3%), blaSHV(1; 14.3%), blaCTXM-1 (4; 57.14%), blaCTXM-14 (2; 28.6%) serta kewujudan bersama blaTEM dan blaCTXM-1 (1; 14,5%), manakala empat pencilan CRE (23.5%) membawa kewujudan bersama gen blaTEM, blaCTXM-1 serta blaNDM-1 (4, 100%). Gen blaTEM dan blaCTXM adalah gen yang paling dominan yang dikesan dalam kedua-dua pencilan K. pneumoniae ESBL dan CRE serta blaNDM-1 telah ditemui dalam K. pneumoniae CRE dan keputusan ini adalah sejajar dengan penemuan lain di seluruh dunia. Memahami hubungan antara kedua-dua ini menyerlahkan kepentingan penggunaan antibiotik secara strategik dalam penjagaan kesihatan dengan menyediakan pemahaman yang lebih mendalam mengenai kerintangan antibiotik dalam organisma yang rintang pelbagai ubat (MDR).

Kata kunci: CRE; ESBL; Klebsiella pneumoniae; rintang antibiotik

 

RUJUKAN

Ang, S.H., Periyasamy, P., Shah, S.A., Ramli, R., Kori, N. & Lau, C.L. 2022. Risk factors for complications and survival outcomes of Klebsiella pneumoniae bacteraemia in Hospital Canselor Tuanku Muhriz Universiti Kebangsaan Malaysia. Medical Journal of Malaysia 77(4): 440-445.

Ashurst, J.V. & Dawson, A. 2022. Klebsiella pneumonia. In StatPearls. StatPearls Publishing. https://pubmed.ncbi.nlm.nih.gov/30085546/

Azimi, L., Rastegar-Lari, A., Talebi, M., Ebrahimzadeh-Namvar, A. & Soleymanzadeh-Moghadam, S. 2013. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. Journal of Medical Bacteriology 2(3-4): 26-31. https://jmb.tums.ac.ir/index.php/jmb/article/view/48

Candan, E.D. & Aksöz, N. 2015. Klebsiella pneumoniae: Characteristics of carbapenem resistance and virulence factors. Acta Biochimica Polonica 62(4): 867-874. https://doi.org/10.18388/abp.2015_1148

Caneiras, C., Lito, L., Melo-Cristino, J. & Duarte, A. 2019. Community-and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: Virulence and antibiotic resistance. Microorganisms 7(5): 138. https://doi.org/10.3390/microorganisms7050138

Carvalho, I., Chenouf, N.S., Carvalho, J.A., Castro, A.P., Silva, V., Capita, R., Alonso-Calleja, C., de Lurdes Nunes Enes Dapkevicius, M., Igrejas, G., Torres, C. & Poeta, P. 2021. Multidrug-resistant Klebsiella pneumoniae harboring extended spectrum β-lactamase encoding genes isolated from human septicemias. PLoS ONE 16(5): e0250525. https://doi.org/10.1371/journal.pone.0250525

Centers for Disease Control and Prevention (CDC). 2019. Antibiotic Resistance Threats in the United States. Atlanta, GA: US Department of Health and Human Services.

Centers for Disease Control and Prevention (CDC). 2019. Healthcare-Associated Infections (HAIs). https://www.cdc.gov/hai/organisms/cre/cre-patients.html (Accessed on 26 December 2023).

Chia, J.H., Chu, C., Su, L.H., Chiu, C.H., Kuo, A.J., Sun, C.F. & Wu, T.L. 2005. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M β-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. Journal of Clinical Microbiology 43(9): 4486-4491. https://doi.org/10.1128/JCM.43.9.4486-4491.2005

Clinical & Laboratory Standards Institute (CLSI). 2023. Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100. Clinical and Laboratory Standard Institute, USA.

Copur Cicek, A., Saral, A., Ozad Duzgun, A., Yasar, E., Cizmeci, Z., Ozlem Balci, P., Sari, F., Firat, M., Altintop, Y.A., Ak, S., Caliskan, A., Yildiz, N., Sancaktar, M., Esra Budak, E., Erturk, A., Birol Ozgumus, O. & Sandalli, C. 2013. Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey. Journal of Antibiotics 66(11): 647-650. https://doi.org/10.1038/ja.2013.72

Dallenne, C., da Costa, A., Decré, D., Favier, C. & Arlet, G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 65(3): 490-495. https://doi.org/10.1093/jac/dkp498

Ejaz, H., Younas, S., Abosalif, K.O.A., Junaid, K., Alzahrani, B., Alsrhani, A., Abdalla, A.E., Ullah, M.I., Qamar, M.U. & Hamam, S.S.M. 2021. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 16(1): 0245126. https://doi.org/10.1371/journal.pone.0245126

Ellington, M.J., Kistler, J., Livermore, D.M. & Woodford, N. 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. Journal of Antimicrobial Chemotherapy 59(2): 321-322. https://doi.org/10.1093/jac/dkl481

Esposito, E.P., Cervoni, M., Bernardo, M., Crivaro, V., Cuccurullo, S., Imperi, F. & Zarrilli, R. 2018. Molecular epidemiology and virulence profiles of colistin-resistant Klebsiella pneumoniae blood isolates from the hospital agency “Ospedale dei Colli,” Naples, Italy. Frontiers in Microbiology 9: 1463. https://doi.org/10.3389/fmicb.2018.01463

Feizabadi, M.M., Mohammadi-Yeganeh, S., Mirsalehian, A., Azimi, P., Mirafshar, S.M., Mahboobi, M., Nili, F. & Yadegarinia, D. 2010. Genetic characterization of ESBL-producing strains of Klebsiella pneumoniae from Tehran hospitals. Journal of Infection in Developing Countries 4(10): 609-615. https://doi.org/10.3855/jidc.1059

Fils, P.E.L., Cholley, P., Gbaguidi-Haore, H., Hocquet, D., Sauget, M. & Bertrand, X. 2021. ESBL-producing Klebsiella pneumoniae in a University Hospital: Molecular features, diffusion of epidemic clones and evaluation of cross-transmission. PLoS ONE 16(3): e0247875. https://doi.org/10.1371/journal.pone.0247875

González, I.A., Palavecino, A., Núñez, C., Dreyse, P., Melo-González, F., Bueno, S.M. & Palavecino, C.E. 2021. Effective treatment against ESBL-producing Klebsiella pneumoniae through synergism of the photodynamic activity of Re (I) compounds with beta-lactams. Pharmaceutics 13(11): 1889. https://doi.org/10.3390/pharmaceutics13111889

He, Y., Guo, X., Xiang, S., Li, J., Li, X., Xiang, H., He, J., Chen, D. & Chen, J. 2016. Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae. Antonie van Leeuwenhoek 109(7): 1029-1040. https://doi.org/10.1007/s10482-016-0702-9

Islam, M.S., Sobur, M.A., Rahman, S., Ballah, F.M., Ievy, S., Siddique, M.P., Rahman, M., Kafi, M.A. & Rahman, M.T. 2022. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV genes among extended-spectrum beta-lactamase-producing Escherichia coli isolated from migratory birds travelling to Bangladesh. Microbial Ecology 83(4): 942-950. https://doi.org/10.1007/s00248-021-01803-x

Jiang, W., Yang, W., Zhao, X., Wang, N. & Ren, H. 2020. Klebsiella pneumoniae presents antimicrobial drug resistance for β‑lactam through the ESBL/PBP signaling pathway. Experimental and Therapeutic Medicine 19(4): 2449-2456. https://doi.org/10.3892/etm.2020.8498

Karaman, E., Çiçek, A.Ç., Şemen, V. & Beriş, F.S. 2024. Characterization of resistance genes and replicon typing in Carbapenem-resistant Klebsiella pneumoniae strains. Annals of Clinical Microbiology and Antimicrobials 23: 19.

Leavitt, A., Chmelnitsky, I., Colodner, R., Ofek, I., Carmeli, Y. & Navon-Venezia, S. 2009. Ertapenem resistance among extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates. Journal of Clinical Microbiology 47(4): 969-974. https://doi.org/10.1128/JCM.00651-08

Lee, Y.Q., Sri La Sri Ponnampalavanar, S., Chong, C.W., Karunakaran, R., Vellasamy, K.M., Abdul Jabar, K., Kong, Z.X., Lau, M.Y. & Teh, C.S.J. 2022. Characterisation of non-carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae based on their clinical and molecular profile in Malaysia. Antibiotics 11(11): 1670. https://doi.org/10.3390/antibiotics11111670

Li, M., Liu, Y., Gong, Y., Yan, X., Wang, L., Zheng, W., Ai, H. & Zhao, Y. 2023. Recent advances in nanoantibiotics against multidrug-resistant bacteria. Nanoscale Advances 5(23): 6278-6317. https://doi.org/10.1039/d3na00530e

Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., Ray, S.M., Thompson, D.L., Wilson, L.E. & Fridkin, S.K. 2014. Multistate point-prevalence survey of health care–associated infections. New England Journal of Medicine 370(13): 1198-1208. https://doi.org/10.1056/nejmoa1306801

Marimuthu, K., Venkatachalam, I., Khong, W.X., Koh, T.H., Cherng, B.P.Z., Van La, M., Pratim De, P., Krishnan, P.U., Tan, T.Y., Choon, R.F.K., Pada, S.K., Lam, C.W., Ooi, S.T., Deepak, R.N., Smitasin, N., Tan, E.L., Lee, J.J., Kurup, A., Young, B., Sim, T.W.N., Thoon, K.C., Fisher, D., Ling, M.L., Peng, A.S.B., Teo, Y., Hsu, L.Y., Lin, T.P.R., Ong, T.H.R., Teo, J., Ng, O.T.; Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group. 2017. Clinical and molecular epidemiology of carbapenem-resistant enterobacteriaceae among adult inpatients in Singapore. Clinical Infectious Diseases 64(Suppl 2): S68-S75. https://doi.org/10.1093/cid/cix113

Morrill, H.J., Pogue, J.M., Kaye, K.S. & LaPlante, K.L. 2015. Treatment options for carbapenem-resistant enterobacteriaceae infections. Open Forum Infectious Disease 2(2): ofv050. https://doi.org/10.1093/o

Moya, C. & Maicas, S. 2020. Antimicrobial resistance in Klebsiella pneumoniae strains: Mechanisms and outbreaks. Proceedings of the 1st International Electronic Conference on Microbiology 66(1): 11. https://doi.org/10.3390/proceedings2020066011

Muzaheed, M., Sattar Shaikh, N., Sattar Shaikh, S., Acharya, S., Sarwar Moosa, S., Habeeb Shaikh, M., M. Alzahrani, F. & Ibrahim Alomar, A. 2021. Characterization of CTX-M-15-Klebsiella pneumoniae from inpatients and outpatients of a teaching hospital. F1000 Research 10: 444. https://doi.org/10.12688/f1000research.53221.1

Nordmann, P., Dortet, L. & Poirel, L. 2012. Carbapenem resistance in enterobacteriaceae: Here is the storm! Trends in Molecular Medicine 18(5): 263-272. https://doi.org/10.1016/j.molmed.2012.03.003

Paterson, D.L. & Bonomo, R.A. 2005. Extended spectrum beta lactamases: A critical update. Clinical Microbiology Reviews 18(4): 657-686. https://doi.org/10.2174/978160805292911201010115

Peymani, A., Naserpour-Farivar, T., Zare, E. & Azarhoosh, K. 2017. Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. Journal of Preventive Medicine and Hygiene 58(2): E155-E160.

Pishtiwan, A.H. & Khadija, K.M. 2019. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterranean Journal of Hematology and Infectious Diseases 11: e2019041. https://doi.org/10.4084/mjhid.2009.001

Pitout, J.D.D., Nordmann, P. & Poirel, L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrobial Agents and Chemotherapy 59(10): 5873-5884. https://doi.org/10.1128/AAC.01019-15

Queenan, A.M. & Bush, K. 2007. Carbapenemases: The versatile β-lactamases. Clinical  Microbiology Reviews 20(3): 440-458. https://doi.org/10.1128/CMR.00001-07

Sarojamma, V. & Ramakrishna, V. 2011. Prevalence of ESBL-producing Klebsiella pneumoniae isolates in tertiary care hospital. ISRN Microbiology 2011: 318348. https://doi.org/10.5402/2011/318348

Shalmashi, H., Farajnia, S., Sadeghi, M., Tanoumand, A., Veissi, K., Hamishekar, H. & Gotaslou, R. 2022. Detection of ESBLs types blaCTX-M, blaSHV and blaTEM resistance genes among clinical isolates of Pseudomonas aeruginosa. Gene Reports 28: 101637. https://doi.org/10.1016/j.genrep.2022.101637

Vock, I. & Tschudin-Sutter, S. 2019. Carbapenem-resistant Klebsiella pneumoniae - impact of infection-prevention and control interventions. Annals of Translational Medicine 7(S8): S344. https://doi.org/10.21037/atm.2019.09.91

Walter, J., Haller, S., Quinten, C., Kärki, T., Zacher, B., Eckmanns, T., Abu Sin, M., Plachouras, D., Kinross, P., Suetens, C.; ECDC PPS study group. 2018. Healthcare-associated pneumonia in acute care hospitals in European union/European economic area countries: an analysis of data from a point prevalence survey, 2011 to 2012. Eurosurveillance 23(32): 1700843. https://doi.org/10.2807/1560-7917.ES.2018.23.32.1700843

Wei, J., Wenjie, Y., Ping, L., Na, W., Haixia, R. & Xuequn, Z. 2018. Antibiotic resistance of Klebsiella pneumoniae through β-arrestin recruitment-induced β-lactamase signaling pathway. Experimental and Therapeutic Medicine 15(3): 2247-2254. https://doi.org/10.3892/etm.2018.5728

Woodford, N., Fagan, E.J. & Ellington, M.J. 2006. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. Journal of Antimicrobial Chemotherapy 57(1): 154-155. https://doi.org/10.1093/jac/dki412

Wu, A.Y.J., Chang, H., Wang, N.Y., Sun, F.J. & Liu, C.P. 2022. Clinical and molecular characteristics and risk factors for patients acquiring carbapenemase-producing and non-carbapenemase-producing carbapenem-nonsusceptible-enterobacterales bacteremia. Journal of Microbiology, Immunology and Infection 55(6): 1229-1238. https://doi.org/10.1016/j.jmii.2021.10.008

Wu, J.J., Wang, L.R., Liu, Y.F., Chen, H.M. & Yan, J.J. 2011. Prevalence and characteristics of ertapenem-resistant Klebsiella pneumoniae isolates in a Taiwanese University Hospital. Microbial Drug Resistance 17(2): 259-266. https://doi.org/10.1089/mdr.2010.0115

Zhang, J., Zhou, K., Zheng, B., Zhao, L., Shen, P., Ji, J., Wei, Z., Li, L., Zhou, J. & Xiao, Y. 2016. High prevalence of ESBL-producing Klebsiella pneumoniae causing community-onset infections in China. Frontiers in Microbiology 7: 1830. https://doi.org/10.3389/fmicb.2016.01830

Zhang, Y.L., Huang, F.Y., Gan, L.L., Yu, X., Cai, D.J., Fang, J., Zhong, Z.J., Guo, H.R. Xie, Y., Yi, J., Wang, Z.S. & Zuo, Z.C. 2021. High prevalence of bla CTX-M and bla SHV among ESBL producing E. coli isolates from beef cattle in China’s Sichuan-Chongqing circle. Scientific Report 11(1): 13725. https://doi.org/10.1038/s41598-021-93201-z

Zhang, N., Wang, X., Li, Y., Lu, Y., Sheng, C., Sun, Y. & Jiao, Y. 2025. Mechanisms and therapeutic implications of gene expression regulation by circRNA- protein interactions in cancer. Commun. Biol. 8(1): 77. https://doi.org/10.1038/s42003-024-07383-z

 

*Pengarang untuk surat-menyurat; email: nikyus@usm.my

 

 

 

 

 

 

 

 

 

           

sebelumnya